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Globally and randomly coupled Ginzburg-Landau maps
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We propose a method for reducing a continuous dynamical system of coupled oscillators to discrete coupled
maps. We apply the method to the coupled Ginzburg-Lari@dy oscillators. In the case of global coupling,
we find that the coupled GL maps exhibit irregular collective motions, and furthermore, we confirm numeri-
cally that the dynamical behavior is analogous to those of the original system. We obtain numerically the phase
diagram in the case of random coupling, and propose a qualitative explanation by approximating the exponen-
tial function of the random coupling matrix along the lines of the spin glass thE®t¥63-651X97)11707-X

PACS numbd(s): 05.904+m, 05.45:+b, 02.50--r, 87.10+e

[. INTRODUCTION types of attractors of Eq1.1), e.g., synchronized oscillation,
clustering, collective chaos, and so on.

One of the frontiers of statistical physics is the investiga- Furthermore, if the coupling coefficients are randdr@—
tion of open nonequilibrium systems where no detailed bal21], the system admits a multi-stable structure, which plays
ance generally exists. These kinds of systems exhibit behawan interesting role.
iors quite different from the equilibrium situation. The most ~ Since we are aiming at both applications and mathemati-
significant aspect is the existence of self-sustained tempasal tractable models, an alternative to rigorous analysis is to
rally oscillatory motion, which is totally distinct from the use the weak coupling limit among oscillator elemdit22]
stochastic temporal evolution observed in the equilibrium(it is more successful in the case of random coupling
state. Such an oscillatory behavior causes a lot of different23,24). The weak coupling approximation enables us to
phenomena in nature, e.g., dissipative structures, chaos, tieduce the system to phase variables only, with the help of
bulence, and so on. In fact, many authfits 3] believe that an adiabatic elimination of amplitudes. As is well known, the
a large population of coupled oscillators can serve as a goodeak coupling approximation has been fruitfully applied in
model for studying these complex systems. the analysis of the entrainment of a globally coupled phase

Recently, such oscillatory phenomena have been widelgscillator systenj11-15. On the other hand, this reduction
noticed also from a biological point of view. In particular in usually brings about the existence of a Liapunov function,
neuro-physiological experiments, limit cycle behavior of thewhich eventually leads to a fixed-point attractor. We will
activity of module of neurons have been repoifiéd6], and  propose a reduced system that exhibits qualitatively the same
these oscillations can be expected to be related with the braitynamics as the nonreduced original differential equation
functions. Thus, the collective dynamics of a system consistsystem. From a technical point of view we will obtain our
ing of globally coupled identical elements is intensively reduced dynamics by transforming the coupled differential
studied in the area of modeling neural netwofks-17]. equations to an equivalent coupled map system.

Some authors concentrate on systems whose dynamical This paper is organized as follows. In Sec. Il, we explain
element is described by the complex Ginzburg-Landau equahe general ideas for the reduction of a system of differential
tion [8,9] (for the Ginzburg-Landau system with real coeffi- equations to a model discrete in time, and apply this ap-
cients, sed10]). In particular, the authors of Reff8] and  proach to the Ginzburg-Landau oscillator system. In Sec. IlI,
[9] proposed a globally coupled Ginzburg-Landau oscillatorthe dynamics of the discrete system is compared with that of
system, the original differential equation for the case of global cou-

pling. In Sec. IV, we discuss several types of attractors of the
L ) ) ) systems with the so-callednfinite-range binary random
W= (1+iCo)WH = (1+iC ) (W [2WD coupling, i.e., a mixture of ferromagnetic and anti-
N ferromagnetic types of coupling. We obtain the phase dia-
+ E(1+i01)2 (WRO—WDY  (j=1,... N), gram in terms c_)f the coupling constant and the con_centration
N k=1 of ferromagnetic bonds. A summary and a discussion on the
(1.2) advantage of.our scheme for the construction of an oscillator

' network is briefly given in Sec. V.
whereW() is the dynamical variable representing the state of Il. COUPLED MAP SYSTEM
the jth oscillator.N is the total number of oscillators, and the _
parametersC,, C;, C,, andK are real. They found many A. Construction of a coupled map system

Let us consider an oscillator described by a complex vari-
ableW(t), which obeys an autonomous equation of motion,
*Electronic address: uchiyama@daisy.phys.kyushu-u.ac.jp )

TElectronic address: fujidascp@mbox.nc.kyushu-u.ac.jp W(t)=F(W(t),W*(1)). (2.1
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Here F denotes a nonlinear function 8 andW*, which is  In this sense, the coupled map syst&hd) may be regarded
assumed to possess a stable limit cycle. Since(E@) is a  as a generalization of coupled oscillators sys{2ri) for any
two-dimensional, autonomous system, it apparently exhibits value. Keepingr Djy finite in the limit T— e, on the other

no chaotic behavior, but allows in principle for an analyticalhand, we have the advantage that a dynamical variable
solution. By_ integra_\ting Eq2.0 frc_>m t, to tn+1(>tn),_tn _ ng) obeying Eq.(2.5 can be described only by a phase
andt,,, being arbitrary, we obtain the formal solution in riaple that denotes the coordinate on the limit cycleFof

terms of the initial valua/n(t,): Although this reduced equation has a structure similar to
B coupled circle mapsthe full equation(2.5 can generally
Wt ) =F - (W), WH(th))  (th1=ty). exhibit quite different dynamics. Our mapping system is ex-

2.2 pected to maintain the dynamical properties of the oscillators
appropriately, while the reduction of degrees of freedom
from 2N (phase+ amplitude to N (phasé¢ makes the prob-
lem simple. This will be demonstrated in the following sub-

W:fO(W,\N*), aftftn/ﬁt|t=tn:f(w(tn)vv\/*(tn))v section.
Some remarkable features about E2.6) are listed be-
and the condition that any state suddenly settles onto thgyy:

limit cycle by the transfer functionf,. By putting

t,=to+nT, T being an arbitrary positive constant called the

discrete time interval, Eq2.2) can be expressed in terms of

the mapping system Djx=Dy=Ji=J5;- 2.9

The transfer func’riorftnﬂ,tn satisfies both

(1) Hermite coupling If D is Hermitian, thenJ is also
Hermitian. Namely,

Wi 1= (W, W3, 2.3 This is a precondition for the existence of a Liapunov func-
) tion [27].
where W,=W(t,). We call Eq.(2.3 our element mapping (2) In-phase (synchronization) conditiotf Iﬁjk satisfies

system. the condition
Now, we proceed to construct a coupled map system. In

this paper we only consider linear couplings. Btbe a N
linear coupling operator defined by E Dik=0 (j=1,...N), (2.9
k=1
N
DW= Djkw(k) (ji=1,...N), (2.4  then the equality
k=1 N
where D, denotes the elements of the constant maiix ,Z'l =1 (=1,...N) (219

and the superscript oW denotes the oscillator number. Note

thatD is not necessarily restricted to spatially local coupling.holds. It guarantees the existence of the in-phase state, i.e.,
We are here concerned with the application to neural netwV=w@=...=WN=w, where W, is the limit cycle
works, where the connection among neurons may extengolution of the single mag2.3) (see Secs. Il and I\ as a
over the whole system. In this case all matrix elements oparticular solution of Eq(2.5).

D can take nonvanishing finite values. (3) Difference coupling formif D takes the form
Our coupled map system is constituted by

N
N Dy=Di— 8>, D; (2.11)
. jk jk— Cjk il
WLy =2 35 (W W) (j=1,... N), =1
k=1
(2.5 for a certain matrbD, Eq.(2.9) is satisfied. The forni2.11)

will be referred to as the “difference coupling form” since

with the interaction N

N
‘]jk:(eTb)jk . (26) kZ]_ f)jkw(k):gl D]k(W(k)_W(])) (J :1, e ,N)

This construction _ is a straightforward extension of theln the remaining part of the present paper, the coupling ele-
method proposed if25]. For a simple model, one can con- mentsf)jk are chosen according to E@.11.

struct a coupled oscillator system that rigorously yields Eq.

(2.5 [26]. Note that no restriction on the magnitudeTofs

imposed at present. It is easy to show that in the limit

T—0, Eq.(2.5 reduces to the following coupled oscillator ~ Let us apply the above reduction scheme to the Ginzburg-
system: Landau(GL) oscillator[8,9] given by

B. Coupled Ginzburg-Landau map system

N FIW,W*)=(14iCo)W—(1+iC,)|W]?W. (2.12

Wi =FwWD Wy + > D WK (j=1,... N). . o I :
H ' ) zk: Ik (=1 N This equation is quite familiar in the study of chemical

(2.7  waves and spatiotemporal complex behaviors in reaction-
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diffusion systems. One easily checks that the equation ofunction of Eq.(2.17) decreasing monotonically in time, pro-
motion (2.1) with Eq. (2.12 has a unique stable limit cycle vided that the matrix); is Hermitian.
W(t)=¢e'(Co~ €2t The transfer function is immediately ob-

tained by integration of Eq2.1): ll. GLOBALLY COUPLED GL MAP SYSTEM

fr(W,W*) = e/ (ComC2TW[ (1—-e~2T)|W)? In this section we consider the large population dynamics
4o 2T]-(1+iCyR2 21 of GL oscillators with the global difference coupling form
e ] ' 213 Eqg. (2.11). The term “global” means that the coupling is

The system has a symmetry with respect to a simultaneo@!-t0-all, and the coupling constants are defined by
phase shifiphase rotation symmetryThen, without loss of
generality, we can choo$g,= C,, which implies a transfor- D'k=5(1+ iCy). (3.0
mation to a rotating coordinate system with frequency S\
Co—C,. ForT—x, Eq. (2.13 simplifies to
_ The corresponding oscillator systdhe differential equa-
foo(W,W*) =W|W]| 17 C2, (2.149  tion system(1.1)] with the global coupling has been studied
] o ] by Hakim and Rappe[8] and Nakagawa and Kuramoto

Therefore, the coupled map system in the liffit> IS (NK) [9]. They determined the stability regions in the

given by (C;,C,,K) space of two characteristic kinds of motion, the
N synchronized and the uniform phase distribution state. Fur-
ngl: E ijMk)|Mk)|—l—iCZ (i=1,...N), ihermore the possibility of the existence of irregular motion
k=1 in other parameter regions has been suggested.
(2.19 Let E denote the unit matrix and the matrix with all

. S A . elements equal to unity. Then the matfxis written as
where the coupling;, remains finite by keepin@, T finite. d y

Equations(2.14) and(2.195 will be called, respectively, the

GL mapand thecoupled GL map system D=
In order to extract the dynamics restricted on the limit

cycle, let us introduce

zZ|l X

(1+iC,)(I—NE). (3.2

» _ Hence we have
wi=R0ei#y’  eit=f_wi Wiy, (2.1 i X
_ ro noen _ DM=(-1)"K™(1+iC,))™D (m=0,1,2,...),

R{) and ¢ are the amplitude and the phaseWwf), re- (3.3
spectively, andd{’ is given by 6= () — C,InRY . With . . . .
this notation we obtain coupled equations for the phase varand the coupling matrid=exp(TD) can be written as
able 61)) only, ;
. e S —1_ a—(1+iCKT
» S, J=E+Z(I-NE), ¢=1-e VKT (3.4
+1=

K
|2E‘]jkel O |1+IC2

(j=1,...N). (217
The diagonal and off-diagonal elements are thus given by
The amplitude is determined by the phase dynamics as

() — 5Ny Li6® T . (N-1) £ '
Ry 1=]Z,Jjke'% |, which implies a reduction of the num- Jjj=1- — = ddag: =g =Jor  (17K).
ber of degrees of freedom fromN2to N. This property 3.5
makes the problem easier to handle and the numerical com- '

putation faster. Equatiof.17) is the fundamental equation In the limit KT—0 all off-diagonal elements vanish. One

of motion in the present paper for studying the dynamics ""Should note that the above expression always satisfies the

) . “Synchronization conditiofi2.10. It is incidentally remarked
model (2.17) reduces to coupled circle maps in a weak cou that the globally coupled GL maps transfers a set of variables

pling case(see Appendix A 0 ) :
It is worth stressing that Eq2.17) can be interpreted as a ngp;;%r:( %cwcle in the complex plane to another dsee

kind of neural network model. For simplicity consider
C,=0. If both the set of coupling elementg and the initial
valuese' ™8’ are real, then, by putting{)=¢' 99)(= +1), Eq.
(2.17) takes the following form:

A. Linear stability of in-phase
and uniform phase distribution states

N Let us for a moment consider finite values of the discrete
. _ time stepT. We will analyze the linear stability of particular
‘751111259’{ kzl ij"#wk)) (1=1,...N). (218  goytions, and then compare the results with the Fheos
limit and the T—0 limit. The limit T—0 will turn out to
This equation is identical to the well-known McCullock-Pitts coincide with the corresponding differential equation system
model[28] with vanishing thresholds. As shown in Appen- by NK. The following calculations are carried out with re-
dix B, it is possible to prove the existence of a Liapunovspect to variablesV{ instead of6’ .
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First, let us consider the in-phad§®) state, where all the T—0, in agreement with the corresponding differential
oscillators are in-phase and the system behaves just like eguation system. With the help of cyclic determinant calcu-
single oscillator lation [14], the eigenvalues of the stability matrix for the

() — 1 P UPD state can be classified into six typas=1 (N—2),
Wy =1=Wy". (3.6 \,=e2®"DT (N-2), A5 (1), A4 (1), Xs(=A}) (1), and

—\* P R ot
Here the phase rotation symmetry permits the choice)‘e’(_).\“) (1)'2)‘3 and)\4_are given by a single characteristic
WP =1. The linear stability of the solutiof3.6) can be cguaton NAANEB=0, and A5 and A by

o ) y ol ) MHAYN+B*=0, where the complex coefficientd and
examined by solving the equations for the deviatioh';

- P B are defined by
and &NE,‘)* fromw, , i.e.,
14 e2K-1T

5 (1+e(17iC1)KT)

. afr o Ofr A=
WYL =2, ij(— WIP5WE1 "+ W
n

o)
wiP 2K—1)T
n l1-e .
(i=1,...N), @7 _iCZ(T)(l_e(llcl)KT)’
i=1,...N), )

and its complex conjugate. Instability occurs if the largest of
the 2N eigenvalues becomes equal to unity in modujheu- i
tral condition. The eigenvalues of the stability matrix for the The eigenvalueas, A4, A5, and\ are relevant for the sta-
IP state can be classified into four types;=1 (1), bility of the UPD state. Two neutral conditions for these four
No,=e 2T (1), A5 (N—1), andr, (N—1), where the num- €igenvalues lead to

bers in the parentheses refer to the degree of degeneracy. 2 2 N2 2 (x2_

A3 and N\, are given by the characteristic equation (AP +[A%- 45| - 4)"=2R¢ A%(A 4B)]
N+ AN+ B=0, with the real coefficients +2|A|2|A2—4B|. (3.12

B=g(3-iCyKT-2T

A=(1+e"?T)cog C;KT)— Cy(1—e?T)sin(C,KT), It is just the stability boundary of the UPD state for the finite
T. To compare the stability boundary of the discrete equation
with that of the differential one, we expand and B with
respect tol and obtain

B=g 2(K+1T

N1 and\, are irrelevant to the stability of the IP state. The
neutral condition|\3|=1 and|\,|=1, leads to K(K—1)[K(2K— 1)Ci+4(K— 1)(2K—1)C,C,

(A2+| A%~ 48| - 4)2=4A%| A*~ 48| 3.9 —K(K—1)C2+(3K—2)2]=0 (3.13
It determines the stability boundary of the IP state for finitej, 5ccordance with the analysis of the differential equation

T. ForT—0, Eq.(3.9) simplifies to system[9]. Oppositely, taking the limifT—o by keeping
KT finite, we obtain the equation that determines the bound-

(1+C3)K+2(1+C,C,)=0. (3.9 ary of the UPD state,
This condition agrees with that derived by NK for the differ- 1C2)(1+e2KT) 4 _ 2
ential equation systerf9]. On the other hand, taking the (1+C)(1+e)+2(1-Co)cod C,KT)
limit T— and keeping the produ®T finite, the stability +2C,sin(CKT)]ekT=4. (3.14

boundary is determined by
This is an inherent result of the present model.

e?T—[cogC;KT)—C,sin(C;KT)]*=0. (3.10 Equations(3.8) and (3.12) thus confirm that our system
) ] - can cope with the differential system as the special case
This result is specific for our model. T—0. Note thatk and T do not enter independently Egs.

Second, let us consider the linear stability of the uniform(z 10 and(3.14), but appear in the product foriT. This
phase distribution stat@JPD). In this state the phase is uni- 53¢t shows that the limif— o should be taken by keeping
tribution function for the phase in the lim\l—c is con- The stable regions of the IP and the UPD state are shown
stant, 1/2r. In contrast to the IP state we can say that thein Fig. 1(a). The characteristic feature of these phase dia-
UPD state is the most disordered stationary state with respegiams resembles that for the differential equation sy$tse
to the phase distribution. The UPD solution is easily ob-Fig. 1(p)]. In particular, forC;=C,=0, Egs.(3.10 and

tained as (3.14 both giveeXT=1. This implies that the motion in the
T g=2T globally coupled system Witﬁlzcz_zo would bg attracted
wi) = S €[ TKCConTHO]l  @=27/N to the IP or the UPD state depending on the sigiK®f
. 1-e” ’ '
(311 B. Numerical simulation

This state exists only when the coupling strength obeys For the parameter valu€s;= —1 andC,=2, Eqs.(3.10
K=<1. The amplitude attains the valufl—K in the limit  and(3.14 tell us that the IP and the UPD state lose their
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teristics of the attractors observed in Fig. 2. Collective chaos
(KT=0.62) hasN positive Liapunov exponents, and cluster
fusion (KT=0.73) has positive Liapunov exponents of order
N. For the spectrum of quasiperiodic 3-clustelsTE 0.90)

and periodic 2-clusters, the partitioning process into clusters
depends on the initial condition. Thus, these spectra clearly
manifest the band structure corresponding to their cluster
partitions. The spectra fdT=0.56 and 1.00 have already

0 Z, T % ey 10 been predicted analytically in the previous subsection.
The similarity of attractors between the differential equa-
<] IP stable, UPD unstable EER 1P stable, UPD stable tion system and the present mapping system is again empha-

IP unstable, UPD stable 1P unstable, UPD unstable

sized. Although the present approach uses effective phase
FIG. 1. Phase diagrams for coupled map syst@nT— with ~ variables, we obtain quantitative coincidence with the differ-
finite KT, C,=2.0, (b) T=0.01,C,=2.0. Note the difference of the €Ntial coupled oscillator system, which involves both the
scales of ordinates between the two figures. The phase digggam Phase and the amplitude variables. A similar striking coinci-
is close to that for the differential equation system. dence cannot be achieved if coupled circle maps are em-
ployed.
stability for KT<0.73 andKT>0.56, respectively. We nu-
merically solved Eq(2.17) with N=100, in order to confirm IV. RANDOMLY COUPLED GL MAP SYSTEM
these predictions. Initial phases were set to be uniformly dis-
tributed between 0 and7s2 The numerical result shows that
the IP state becomes unstable f6F<<1.0. Such a discrep-
ancy has also been reported in the differential equation sy
tem[9]. As mentioned by NK, it originates from the choice
of the initial condition, which is not contained in the basin of
the IP state for 0.78KT<1.0. Of course, if the system A. Binary random coupling D= =K/N
starts with an initial condition near the IP State, we find the For a Simp'e realization of Coup“ngjk, we adopt a bi-
stability boundaryk T=0.73. On the other hand, the bound- nary randomness for each elemén along the lines of the
ary of the UPD state agrees with the above mentioned valuex 3 model in the spin glass theory, where the coupling is
In order to observe attractors in the unstable regions of thgymmetric and either ferromagneti¢>0) with the prob-
IP and the UPD state, we numerically integrated €17 apility p or antiferromagnetic-J with 1—p. Furthermore
for KT=0.56, 0.62, 0.73, 0.90, 0.99, and 1.00. The oscillatokhe coupling constants are assumed to be independent of
number and the initial condition are the same as above. Thgach other, so that the distribution function factorizes for all

time evolution of phases is shown in Fig. 2. This clearlyglements. Namely, the probability distribution &f ) is
shows that depending dT the system has various attrac- given by

tors, i.e.,(a) UPD, (b) collective chaos(c) cluster fusion (d)
and (e) cluster states(f) IP, which have been reported also K K
by NK. Collective chaos implies a chaotic motion with ~ P(Dji) =P 5<Djk_ﬁ)+(1_p)5 Djk+ﬁ)’ Dji=Dyj»
degrees of freedom, which emerges especially as a result of (4.
couplings among nonchaotic elements such as limit cycle
oscillators. The dynamics of one site in the cluster fusiorwhereN, K, andp (0=<p=1) denote the system size, the
state reflects a repetition of the fusion to and the splittingcoupling strength, and the mixture rate with different signs
from clusters. The dynamics in thecluster state is similar of coupling, respectively. Without loss of generality, is
to the coupledn map system. Strictly speakingd) is the  chosen to be positive since the coupling matrix is symmetric
quasiperiodic 3-cluster state, afc) the periodic 2-clusters with respect to the transformatiok (p) — (—K,1—p). With
state. Eq. (4.1 the nth moment ofD;, is easily obtained as

To study the trajectory instability of the attractors ob-

In this section, we consider the coupled GL map system
with quenched random couplirg;, . We will focus first on

he construction of the coupling, which is a remarkable
eature of our model.

o . . . n
e o g 2 e mestte b Lo s, o, (Ko o pies, a2

66n+1=G(n) 56y, (3.19  Throughout this section, we focus on the influence of these

where 56,=Col. (565", 8617, ... .86{") and parlirr;?éeerrs tgndg(?uts):/s? ?hzf:ftftéif tc())frsr;emdom coupling on the

e implest choeT s and Ca0. As mentoned above,

Gjk(n)=(Re=Czlm) rxjnkjlei o<n”>' (3.19 zmypglsé ;hase ,variable affeéts tHe system evolution in ’the

T—oe limit. In addition C,=0 ensures the existence of a
The spectrum was obtained from the eigenvalues of the md-iapunov function. However, the system has many different
trix U, defined bysg,=U,860, with n=500, after the tran- equilibria since frustration arises due to the mixture of posi-
sient has decayed. The results in Fig. 3 have characteristi¢tiye and negative coupling constants. To get some impres-
similar to those found in NK. The spectra reflect the characsion about the complexity of the coupled system with
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(b)

(M &
i
=
w
0 TIME 500
BN ____= 3
0 PHASE 2n

FIG. 2. (Color). Temporal evolutions of phase variables for Eg.17 with C;=—1.0, C,=2.0, andN=100 for (a) KT=0.56, (b)
0.62,(c) 0.73,(d) 0.90,(e) 0.99, andf) 1.00. Phase values are expressed by the change of hue. For convenience, we put simultaneous phase
variables on a vertical line although the global coupling imposes no spatial structure among the oscillators. Moreover, we set the color
coordinate such thad{? is fixed to zero at each time step.
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N

1 Ll Ll T T T T ] ] T
oo KT=062 ° = DjkmE:l (ka_ Djm)u (46)
°o° 0.73 +
0.5 K AN 090 = 4 L.
T e, x and does not vanish in general. However, the average of Eq.

(4.6) over random realizatio® vanishes, and its variance is
estimated a®©(N~*?) by means of the random walk theory
[31]. So, the above decomposition holds asymptotically in
the limit N— .

Furthermore, if we neglect the correlation between the
05 | . two matrices, theJ) is replaced by the product of the av-
erage values,

Re( 1)

S — (Jy~(AXB). 4.7
Although the validity of the decoupling approximation is not
15 S S S MU SO S S obvious, we will confirm in the following that this approxi-
0 20 40 60 80 100 mation yields qualitatively quite good results for the param-
index eter region of interest.

FIG. 3. Liapunov spectra for attractors observed in Fig. 2. The
real part of the Liapunov exponents are arranged in order of mag-
nitude. To calculate the moments of the elements of random ma-

tricesA andB, we make an approximation described in Ap-
quenched randomness, the exact calculation of the equililpendix E. The results are
rium states for small systems with= 2,3 is given in Appen-

B. Moments of J

dix D. _i KT(2p-1)_ -2

Because of the above simplification, our Ginzburg- <A”‘>_N (e D+OMNT, (4.83
Landau oscillator system becomes equivalent toxiYespin
system except the coupling form. We may apply the spin 1 (KT)?
glass theory to our model to find equ_ilibrium states in Iarge(A”>:1+ N(eKT(Zp‘l)—1)+ N 2p(1—p)+O(N~2),
systems. The theory of the Sherrigton-Kirkpatri¢gK)
model [29] tells us that for randomly Gaussian distributed (4.8b
coupling constants, (not Djy) with finite first and second
moment 1 KT)\?

(Aj2k>:m(eKT(2p_l>—1)2+ W) 4p(1-p)+O(N~3),
(I =30=J0/N, (J;D—(J)?=0?=T%N, 4.3 (4.80

the phase diagram is determined by the param@tgtd 3 1 KT(2p—1) 3
[30]. In the following we are mainly concerned with the —(Aji)=yz (8" ~—1)°+
moments of off-diagonal elemends , (j #k), since the di-
agonal parfJ;;} is associated with the origin of the energy +O(N™%), (4.80
and never influences the equilibrium states.

It is difficult to calculate the functiondy=Jo(K,T,p,N) and
ando=o(K,T,p,N) without approximations. Let the matrix
J be approximated by the product of two matricesnd B
according toJ~AB, where

KT)\3
W) 4p(1-p)(2p—1)

(Bfy=e MKTZ~D1O(N"Y) (m=1), (4.9

Aj=[exp(TD)]jk, (4.4  wherej#k. By using Eqs(4.8) and(4.9), the moments of
the off-diagonal elements;, are evaluated as follows:

N
Bjk=ex;{ -T 5“('21 Dll) (45)

1
(I =g (1—e 1D, (4.108
This decomposition would hold rigorously, A andB com-
mute. But thgk matrix element of this commutation relation 5 1
reads <ij>zm(1_e—KT(2p—l))2

Z {Di'<5lk§ D|m)_(5jl§m: Djm)le} (KT

2
W) 4p(1—p)e 2KTP-D (4,100
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FIG. 4. The mean and variance of off-diagonal elemdgtgor

04 |
the random coupling case. Symbols are numerical results and lines
stand for approximate resul{.109 and(4.11). For details, see the
text.

1
<J13k>:m(l_ e—KT(2p—l))3

T\3 60 80 100
+ W) 4p(1-p)(2p—1)e TP~ KT
(4.109 FIG. 5. Contours corresponding td,/J=const in the
(KT,p) plane. Numerical values are cowdt =2
and so on. One easily finds that the distributiongfis not

Gaussian for smaN, and that it approaches a delta function estimates seem to be in overall agreement with the numerical
with a peak at zero foN— . Furthermore(J%)—(J;c)? is results.
of the orderO(N~?) though it should beD(N™1) [see Eq.
(4.3)]. Concerning the spin glass theory, this difference im-
plies that the term proportional t0J;) in the mean field
treatment could hide the term proportional(ﬂ:?@ if we take
the thermodynamic limit. In this sense, only for intermediate
values ofN an approximately Gaussian distribution may be
realized.

C. Candidate for phase boundaries

We assume that the curvdg/J = const must be a phase
boundary for certain values of the constant. Namely, by not-
ing the results of the SK model, the following expression
shall serve as a phase boundary in tK& (p) plane:
By making use of the above results, the standard deviation (1—e KTZp=1)y
o=(35)—(J;)? is obtained as

— —-1/2
KT VP —pre T =constx N~

(4.13
KT
o=2 Jp(1—p)e KT@p—1), (4.1

Figure 5 depicts these curves for several values of the right-

hand side of Eq4.13. Although we have no theory at hand
o vanishes fop=0 or p=1 in accordance with the global these contours.

to determine the constant, phases would be separated by
ferromagnetic and the anti-ferromagnetic coupling, respec- We numerically simulated the dynamics of our model
tively. In a similar way the diagonal pa¢d;;) is obtained as  with different realization ofD;,, and investigated what
kinds of attractors are realized depending on the parameter
N—-1 KT(2p-1) values Gsp=<1 and 0<KT=50. For the simulations we
Gp=1-—(1-e =) used the system si2¢=50 and 100, and 100 runs each time.
To observe dynamical behavior and to evaluate the attractors
KT)2 uantitatively, we introduce two complex order parameters
_|_( N) zp(l_p)e—KT(Zp—l)_ (4.12 gy y P P

N
By combining(J;;) with (J;i), the synchronization condition

(2.10 is confirmed in the thermodynamic limit even in the

N
Z,==> expio)), zz=£2 exp(2i 6)),
Ni=1 Ni=1
random coupling case. Needless to say, these mean values (4.14
coincide with the corresponding values in the global cou-
pling cases fop=0 and 1. where 0<|Z;|<1,0<|Z,|<1. Note that only their ampli-

In order to verify the analytical estimates, we carried outtudes are relevant because of the phase rotation symmetry.
numerical simulations. For that purpose we generated a rarf-he order parametef, characterizes the distance to the in-
dom matrix D, for several parameters in the range phase state, and, the distance to a two cluster state with
0<KT=50 and Gs<p=<1, and investigated the moments phase differencer. In particular,|Z,|=|Z,|=1 stands for
(Jjk) and (szk) with 9900 (=N?—N) off-diagonal matrix

the IP state, anfZ,| =0 and|Z,|=1 for the two cluster state
elements. The results are plotted in Fig. 4. The analyticawith equal domain size.
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the IP-AP boundary tends to the poirkT,p)=(0,1). On

the contrary, in the limitK T—o, Fig. 7 suggests that the
boundary between IP and AP asymptotically approaches a
constant value in accordance with our analytic prediction. In
ordinary spin glass theory the phase transition line corre-
sponds to the choice conmsl in Eq.(4.13. In the present
case, our numerical result suggests a value different from
unity. The reason may be attributed to the approximate re-
1 sults (4.109 and (4.10b, which were derived under the as-
sumption of nonvanishingDj). The IP-AP transition line
unfortunately lies close t@=0.5 where our ansatz breaks

FIG. 6. Numerical results for order paramete@:{; vs p, (b)
£, vs p. The system size and the number of ensembles are fixed §OWN- _ o
100 and 100, respectively. The data are also used in Fig. 7. (2) Anti-phase state: In this state, the phase distribution

has two broad peaks separatedbyAs p is decreased],

Figure 6 shows the dependence of the quantitie§lecreases from about unity to zero. The AP-OG transition
£1=(|Z4]) andZ,=(|Z,|) on bothKT andp. Here the an- line shown in Fig. 7 is reproduced quite convincingly by
gular brackets represent an average with respect to both thaserting a negative value for the constasite Fig. 5.
initial conditions of phase variables and the realization of the (3) Oscillator glass state: This state is similar to the UPD
random matrixD ;. These figures suggest the existence ofState €1=0,{,=0) in the sense thaf; and; vanish ap-
three phases: (1) in-phase state characterized by Proximately. We did not observe an OG state withand
(¢1,2,)=(1,1), (2) antiphasestate (AP) characterized by ¢2 equal to zero. Such a feature is related to the existence of
(¢1,¢,)=(0,1), and(3) oscillator glassstate(OG) charac- @ Liapunov function forC,=0 [33]. Instead, we found a
terized by ¢1,,)=(0,0) [32]. Figure 7 depicts the numeri- Small region where botl§;<1 and/,<1 hold. Numerical
Ca“y obtained phase diagram_ For convenience we preseﬁimulaﬂons generate this so-called oscillator g|aSS state for

numerical values for the phase boundaries the corresponding parameter valygg. 6). The majority of
coupling elements belongs to negative values, which is simi-
£,=0.94+0.05,IP-AP; {,=0.25+0.01,AP-OG. lar to the fact that the UPD state is stable in the case of

(4.15 global anti-ferromagnetic couplind=q.(3.14].
For a finiteN, the AP state can be observed in the param-
A concrete discussion of each phase is summarized beloweter region whergJ;)=0, and the numerically obtained
(1) In-phase state: Our analysis presented above alreadandidate for AP-OG boundary resembles the curve defined
suggests that in the IP state the majority of the couplindy Eg. (4.15. But, its existence is not proved by the SK
coefficientsJ is positive. Hence the occurrence of the IPtheory and our discussion. Whew tends to infinity, the
state for large values op is easily understood. It seems curves given by Eq(4.13 with positive values for the con-
plausible that in the limiKT— 0, where the extremely long stant tend to the linp=0.5 from above, whereas the curves
relaxation time prevents us from approaching equilibriumwith negative values for the constant approgch0.5 from
below for any value oKT. As a consequence the AP phase
1 . . . ; would vanish(see Fig. 7 in the thermodynamic limit.
N=50 s Let us emphasize the similarity between Fig. 7 and the
P 50 —— phase diagram in the SKY spin system. Referencg34,35
08 - 100 +~=— | reported on two mixed phases, which may have the aspect of
: 100 —— both the ferromagnetic phase and the spin glass one. These
L4

; 33 e 2 two were separated by three boundaries, JgJ =1, the de
06 L L 8 e ? _’ Almeida—Thouless line and the Gabay-Toulouse [i88].
: ""*f However, returning to our phase diagram, it is still difficult

to recognize whether critical values different fraly/J ~1

exist at all. In such a case a theoretical or numerical deter-
0.4 r AP ) mination would be tempting. Consequently we have yet no
] definite idea about the relation between the mixed states in
0.2 I H% the SK XY spin system and the AP phase in the present

7 system except that both are surrounded by the most ordered
{ % % % phase(IP, ferromagneticand the most disordered o(@G,
% % ! % spin glasin each phase diagram.

oG I
0 N }isf

0 10 20 30 40 50
KT V. CONCLUDING REMARKS

FIG. 7. Numerically determined phase diagram using the defi- In this paper, we proposed a general approach to con-
nition (4.15. The bars indicate the transition regiongnThe sys-  Structing coupled map systems for coupled differential equa-
tem size plays a crucial role on the position of phase boundaries. ons and applied it to the coupled GL oscillator system. The
is explicitly involved in Eq.(4.13. Compare with Fig. 5. limit T—oo is of our particular interest. For global coupling
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theoretical and numerical results coincide with the full dif- 1 N T,

ferential equation system. In this sense, as long as global En:_§2 ije*”’n elon . (B1)
coupling is concerned, the GL map system well describes the Ik

GL equation system in contrast to the frequently investigated ) ]

circle map systerfil6,17. Our success is even more striking This is proved as follows. First, note tha, is a real func-

if one keeps in mind that each oscillator is completely deion since J is Hermitian. We define the local potential
scribed by phase variables at every discrete time step. Ferl) ==, J; € 0 The energy change\E,=E, . ,—E,
random coupling matrices we constructed quantitatively thevith the change at the siteis calculated as

phase diagram with the help of the spin glass theory. An

extension to different random realizations, e(@;)#0, is AE,=—|h{'[[1—cogarg(’— 6))]<0. (B2
straightforward.

prezlgr?t”)r/ﬁg:/j;?ndd asocrﬁrgr::grtametpvforrs Irantg) dnelt;engsrerr;géeﬁince E, monotonically_decreases in_ the course of time, it
with C,=0 andT—« belongs to the group of phasérs- as the property of a Liapunov function.
cillator) neural network modelf23,24,37,38 J is specified
by the generalized Hebb rulewhich is designed to retrieve APPENDIX C: GEOMETRIC INTERPRETATION
embedded phase patterns. In this c&ebecomes unimpor- OF GLOBALLY COUPLED GL MAPS

tant for the lack of a unique phase direction for random cou-
plings. Replica symmetry solutions for the model reveal th
storage capacity.=0.0377. In the future, we intend to gen-
eralize this network t&C,# 0 for which no Liapunov func-
tion is available and interesting dynamical behaviors are ex-
pected to occur even in a rotating frame. Research in this
direction is now in progress, and will be reported elsewhere.

This expression indicates that the $WE]") ;j=1,... N} is
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The time evolution of amplitud®!’ can be read off from

eEq. (2.19 as

N N
: ) 0 )
Ry = kZl Jjxe'fn | = Jofsz_:l e+ (Jgiag— Jor) €' |.

APPENDIX D: EQUILIBRIA CONSTRUCTED
APPENDIX A: WEAK COUPLING LIMIT FOR N=2.3 GL MAPS
OF THE COUPLED GL MAP SYSTEM ] ]
In this Appendix we analyze the systems of two and three

Equation(2.17) is rewritten as coupled elements withC,=0 and symmetric couplings
) ) ) i) Djk=Dy;. The conditionC,=0 prevents our system from
On:1= 05+ ajj+arghy’) = Calnfhy, permanent temporal evolution. As defined in Sec. IV, we
N will adopt a binary coupling strength
() — el (09— 0D 4 o — i)
hy, kgl |JJk|e n 0 Tk @) (A1) Djx==KI/N. (D1)
where we putl; =|J;|e'*. a;; stands for the intrinsic fre- 1 N=2 case

guency of thejth oscillator. In the weak coupling case ) ) )
(Bik=I3;kl713;;]<1 for k#]), Eq. (A1) reduces to Since only one couplingl¥,,) between the two oscilla-
tors occurs, Eq(2.11) gives a unique coupling configuration,

regardless of the sign of self-couplings, as

5 K(—l 1) 2
+ aj— aj; —arctarc,), (A2) 2l 1 —-1)

N
. . , e
o) 1= 0+ aj;— Caln| ;| + \/1+czk21 Bjsin( 6 — o))

in the lowest order with respect to the relative couplingwhereK>0 (<0) means the ferromagnetiantiferromag-
strength Bj. This type of phase model is called coupled netic) case using the terminology of spin systems. The cou-
circle maps, and has been used by several aufiérslg to  pling matrix J=e® can be easily obtained as

study synchronized oscillations and the dynamical behavior

associated with its breakdown. 1/1+e KT 11— KT
T 2l1-e KT 14eKT) (b3
APPENDIX B: LIAPUNOV FUNCTION FOR C,=0
If the matrixJ is Hermitian, the equation of motig.17) The equilibrium state &2,02) of Eq.(2.17) is determined

for C,=0 has the Liapunov function by
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TABLE |. Equilibrium states and their stability fdl=3. We use an abbreviatiop=g(KT), where
g(x) is given by Eq(D7). Stars refer to the solutions whose existence condition depenid§ owWwe give no
explicit existence condition because all of them are unstable.

(69— 6°mod2m, 63— 6°mod2r)
2 1 3 1

(D12,D53,D39) Stable Unstable

(+,+.+) (0,0) (@.0)*, (0m)*, (m,m)*, (3m,— §m), (—5m.5m)
(+1_1+) (71_7)1 (_717) (77,0), (0177)1 (77177)*! (0,0)

(_1+1_) (77177) (7710)*1 (0777)*7 (010)1 (’)/l_')/)r (_7!7)
(——) (37, 5m), (= 5m.5m) (7,0), (0), (m,7), (0,0)

(65— 69,63— 69). Note that it is possible to choos#=0
—, = without loss of generality because of the rotational symme-
91261+ 3,8 72| [9226' "1+ 38 72| try. The equilibrium states foN=3 are summarized in
(D4)  Table I with the results of their linear stability. The solution
for the (+,—,+) configuration depends dRT through the
function g(KT), defined by

) .0
0 J21e|01+\]229|02

- 0 -0
0_ 3116'01+J128'02 “92

ol

This set of equations has two types of solutigi}s- 65=0
and 7. The linear stability analysis shows the]— 63=0
and 7 are stable foK>0 andK <0, respectively.

—1l+e
). (D7)

2.N=3 case o =arcook e
For N= 3, the calculation 0of goes along the lines of the )

previous section. Note however, that two different couplingVe remark that(see Fig. 8 g(+)=m/2, g(0)= /3,

configurations occur: all of three couplings are either ferro—g(_oo)zlo- . ]

magnetic, i.e., D1,,D,3,D3) = (+,+,+) or antiferromag- We briefly dlscu_ss the relation between th_e three QL map

netic, (—,—,—) (type 1 and one of them has a different System and the spin system made of th¥&espins[39] with

sign from the others, namely, three bondsJj==*J. The phase of the GL map with

(+,+,-),(+,—,=),(+,—,+),(=,+,+),(—,+,—), and C2=0 corresponds to the direction ¥fY spin. The differ-

(—,—,+) (type 2. ence with respect to equilibria and stability is observed in the

coupling strength dependence. Such dependence is enhanced

For type 1, matrice® andJ are given by with the system size

-2 1 1
D= K 1 -2 1 APPENDIX E: MOMENTS OF A; AND By,
3 1
1 1 -2 First of all, we consider the average of the matrix element
) 1 1 Ajc. To this end we illustrate our approach on the simpler
1_e—KT
J=E+T 1 -2 1], (D5) 0.5 .
1 1 -2
whereE is the 3x 3 unit matrix. This coupling corresponds 0.4 | i
to the (+,+,+) coupling forK>0 and to (~,—,—) for )
K<0. For type 2, by taking into account the permutation
symmetry, it is sufficient to define matric€s andJ by 03+ 1
g o
< 0 1 -1 =
d=—| 1 -2 1 ©
D 3 ' 0.2 ]
-1 1 0
q+3q—1/3 —2q q_3q—1/3 01 | |
J=_E+~ —2q  4q —2q |, (De)
3 6
q_3q—l/3 _2q q+3q—1/3
0 L
where q=e XT. This representation corresponds to -20 -10 0 10 20
(+,—,+) for K>0 and to (~,+,—) for K<0. We recall X

that the signs of the diagonal elementdoare unimportant.
With theseJ’s, it is sufficient to solve two kinds of FIG. 8. The functiorg(x), [Eq. (D7)]. It determines the forma-
coupled algebraic equations for the fixed pointtion of stable solutions for{,—,+).
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In the thermodynamic limiN—<, by neglectingO(N~?)
terms, the general term of the expression turns out to be
N~ Y(TNa)"™n!, (n=1,...,5), where we used
a;=0(N™1). Inductively assuming that this holds in gen-
eral, and summing up the series, we obtain &gBa. It is
noted thatKk and T always appear within the product form
KT similar to the globally coupled case in Sec. IIl. 0T is

our intrinsic parameter. With the same procedure, the aver-
ages of diagonal terms are obtained as Bgb.

Now let us turn to the calculation of higher moments of
off-diagonal elementg\; . In particular, we have to calcu-
late the mean squar@Aﬁ(), i.e., the square of the matrix
element and not the matrix element of the squared matrix, to
obtain the functiond (KT,p). For largeN, the most domi-
nant contribution in the coefficient @(T™) in the expan-
sion of (Ajzk) turns out to be proportional ta]' (m=3).
Thus we can estimate up ®(N~?), and find

caseN=2. The off-diagonal elemermk,, is expanded up to
T as

1 2 1 3/ 2 3
A1p=TD1at+ 57 TH(D1aDas+ D1Dog) + 37 T (D 11D 1o+ D1,

1
+D 33D ;D DyD3,) + ET4(D§1D 12+2D14D3,
+ DD 12D p+ 2D3,D 55+ D13D 1D 5+ D1,D3))

1
* aTs( D1,D1,+3DF D35+ Di,+D3iD 1D

+4D1,D3,D5p+ D$D 1D 3,+3D3,D5,+D 14D 1D,
+D,D5,) +O(TH).

Taking the average over random variab@g and noting
that (D} ,DT,D5,)=a,ana,, and so on, we obtain

2
1 2 1 . 5 (Aj2k>=T2a2+T3§Na§
(Ajk>=Ta1+ ET 2a1+ §T (ag+ 2a2a1+ al) ’

40— 4
T Nzt 3

NZaf+---+O(N~3).

1 4 2, L5
+ 47T (6a3a1+ 2a2a1)+ ET (a5+ 2a4a1
Taking the thermodynamic limits, we consequently find Eq.
(4.809 using the same assumption made above. Similarly,

where the index 12 is replaced Lk only to denote the other higher_momen_ts are obtained as (glq8q) and so on. _
averaged off-diagonal element. The calculation of higher moments of diagonal elements is

By carrying out a same procedure, the calculation for arNOt hecessary for the present purpose.
bitrary N is straightforward, and yields The calculatl_on qf moments qBj_k can be perfo_rm_ed _
much more easily, since the matrix in the exponential is di-
agonal. The averaged off-diagonal péR;,) vanishes and
the diagonal par{B;;) is readily given by

+6aza,+6aza’+asa;)+O(T®),

_ 1 o2
(Ajk)—Ta1+ ET Naj

1
. ] 112,53 _ 1 1
+ 3IT [(N=1) a1+2(N 1)a2a1+a3] <Bjj>:1+(_T)Na1+5(_T)2N28€+a(_T)SNgai

1
4 1
+ HT4[(N—2)(N2—N—3)a1+2(N+1)a3a1 n E(—T)4N4a‘1‘+ . +O(NY).
+(3N2—N-8)a,a?]
Summing up this expansion leads approximately4®) in
the thermodynamic limit. Note that the factidrresults from

the number of matrix element®;, in the diagonalﬁjk.
After all, the averaged matri® is neither more nor less than
the unit matrix multiplied by a scalar. This simplicity gives
(4.9 as the higher moments &, , which means no devia-
tion from the corresponding power of its mean value. All
moments of off-diagonal elements vanish.

1
+ g7 TLIN=2)(N°~2N?~4N+4)a;

+(4N%2-5)(N—2)a,a+ (5N>— 1IN+ 3)a3a,
+(3N2—2N—2)aza3+2(2N—1)aza,
+2(N—1)aza;+ag]+O(T®).
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