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Globally and randomly coupled Ginzburg-Landau maps

Satoki Uchiyama* and Hirokazu Fujisaka†

Department of Physics, Kyushu University 33, Fukuoka 812-81, Japan
~Received 12 September 1996!

We propose a method for reducing a continuous dynamical system of coupled oscillators to discrete coupled
maps. We apply the method to the coupled Ginzburg-Landau~GL! oscillators. In the case of global coupling,
we find that the coupled GL maps exhibit irregular collective motions, and furthermore, we confirm numeri-
cally that the dynamical behavior is analogous to those of the original system. We obtain numerically the phase
diagram in the case of random coupling, and propose a qualitative explanation by approximating the exponen-
tial function of the random coupling matrix along the lines of the spin glass theory.@S1063-651X~97!11707-X#

PACS number~s!: 05.90.1m, 05.45.1b, 02.50.2r, 87.10.1e
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I. INTRODUCTION

One of the frontiers of statistical physics is the investig
tion of open nonequilibrium systems where no detailed b
ance generally exists. These kinds of systems exhibit be
iors quite different from the equilibrium situation. The mo
significant aspect is the existence of self-sustained tem
rally oscillatory motion, which is totally distinct from the
stochastic temporal evolution observed in the equilibri
state. Such an oscillatory behavior causes a lot of differ
phenomena in nature, e.g., dissipative structures, chaos
bulence, and so on. In fact, many authors@1–3# believe that
a large population of coupled oscillators can serve as a g
model for studying these complex systems.

Recently, such oscillatory phenomena have been wid
noticed also from a biological point of view. In particular
neuro-physiological experiments, limit cycle behavior of t
activity of module of neurons have been reported@4–6#, and
these oscillations can be expected to be related with the b
functions. Thus, the collective dynamics of a system cons
ing of globally coupled identical elements is intensive
studied in the area of modeling neural networks@7–17#.

Some authors concentrate on systems whose dynam
element is described by the complex Ginzburg-Landau eq
tion @8,9# ~for the Ginzburg-Landau system with real coef
cients, see@10#!. In particular, the authors of Refs.@8# and
@9# proposed a globally coupled Ginzburg-Landau oscilla
system,

Ẇ~ j !5~11 iC0!W
~ j !2~11 iC2!uW~ j !u2W~ j !

1
K

N
~11 iC1!(

k51

N

~W~k!2W~ j !! ~ j51, . . . ,N!,

~1.1!

whereW( j ) is the dynamical variable representing the state
the j th oscillator.N is the total number of oscillators, and th
parametersC0, C1, C2, andK are real. They found many
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types of attractors of Eq.~1.1!, e.g., synchronized oscillation
clustering, collective chaos, and so on.

Furthermore, if the coupling coefficients are random@18–
21#, the system admits a multi-stable structure, which pla
an interesting role.

Since we are aiming at both applications and mathem
cal tractable models, an alternative to rigorous analysis i
use the weak coupling limit among oscillator elements@1,22#
~it is more successful in the case of random coupl
@23,24#!. The weak coupling approximation enables us
reduce the system to phase variables only, with the help
an adiabatic elimination of amplitudes. As is well known, t
weak coupling approximation has been fruitfully applied
the analysis of the entrainment of a globally coupled ph
oscillator system@11–15#. On the other hand, this reductio
usually brings about the existence of a Liapunov functio
which eventually leads to a fixed-point attractor. We w
propose a reduced system that exhibits qualitatively the s
dynamics as the nonreduced original differential equat
system. From a technical point of view we will obtain o
reduced dynamics by transforming the coupled differen
equations to an equivalent coupled map system.

This paper is organized as follows. In Sec. II, we expla
the general ideas for the reduction of a system of differen
equations to a model discrete in time, and apply this
proach to the Ginzburg-Landau oscillator system. In Sec.
the dynamics of the discrete system is compared with tha
the original differential equation for the case of global co
pling. In Sec. IV, we discuss several types of attractors of
systems with the so-called~infinite-range! binary random
coupling, i.e., a mixture of ferromagnetic and an
ferromagnetic types of coupling. We obtain the phase d
gram in terms of the coupling constant and the concentra
of ferromagnetic bonds. A summary and a discussion on
advantage of our scheme for the construction of an oscilla
network is briefly given in Sec. V.

II. COUPLED MAP SYSTEM

A. Construction of a coupled map system

Let us consider an oscillator described by a complex v
ableW(t), which obeys an autonomous equation of motio

Ẇ~ t !5F„W~ t !,W* ~ t !…. ~2.1!
99 © 1997 The American Physical Society
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HereF denotes a nonlinear function ofW andW* , which is
assumed to possess a stable limit cycle. Since Eq.~2.1! is a
two-dimensional, autonomous system, it apparently exhi
no chaotic behavior, but allows in principle for an analytic
solution. By integrating Eq.~2.1! from tn to tn11(.tn), tn
and tn11 being arbitrary, we obtain the formal solution
terms of the initial valueW(tn):

W~ tn11!5 f tn112tn
„W~ tn!,W* ~ tn!… ~ tn11>tn!.

~2.2!

The transfer functionf tn112tn
satisfies both

W5 f 0~W,W* !, ] f t2tn
/]tu t5tn

5F„W~ tn!,W* ~ tn!…,

and the condition that any state suddenly settles onto
limit cycle by the transfer function f ` . By putting
tn5t01nT, T being an arbitrary positive constant called t
discrete time interval, Eq.~2.2! can be expressed in terms
the mapping system

Wn115 f T~Wn ,Wn* !, ~2.3!

whereWn[W(tn). We call Eq.~2.3! our element mapping
system.

Now, we proceed to construct a coupled map system
this paper we only consider linear couplings. LetD be a
linear coupling operator defined by

DW~ j !5 (
k51

N

D̂ jkW
~k! ~ j51, . . . ,N!, ~2.4!

where D̂ jk denotes the elements of the constant matrixD̂,
and the superscript onW denotes the oscillator number. No
thatD is not necessarily restricted to spatially local couplin
We are here concerned with the application to neural n
works, where the connection among neurons may ext
over the whole system. In this case all matrix elements
D̂ can take nonvanishing finite values.

Our coupled map system is constituted by

Wn11
~ j ! 5 (

k51

N

Jjk f T~Wn
~k! ,Wn

~k!* ! ~ j51, . . . ,N!,

~2.5!

with the interaction

Jjk5~eTD̂! jk . ~2.6!

This construction is a straightforward extension of t
method proposed in@25#. For a simple model, one can con
struct a coupled oscillator system that rigorously yields E
~2.5! @26#. Note that no restriction on the magnitude ofT is
imposed at present. It is easy to show that in the lim
T→0, Eq. ~2.5! reduces to the following coupled oscillato
system:

Ẇ~ j !5F~W~ j !,W~ j !* !1(
k

N

D̂ jkW
~k! ~ j51, . . . ,N!.

~2.7!
ts
l

e
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.
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In this sense, the coupled map system~2.5! may be regarded
as a generalization of coupled oscillators system~2.7! for any
T value. KeepingTD̂jk finite in the limitT→`, on the other
hand, we have the advantage that a dynamical varia
Wn

( j ) obeying Eq.~2.5! can be described only by a phas
variable that denotes the coordinate on the limit cycle ofF.
Although this reduced equation has a structure similar
coupled circle maps, the full equation~2.5! can generally
exhibit quite different dynamics. Our mapping system is e
pected to maintain the dynamical properties of the oscillat
appropriately, while the reduction of degrees of freedo
from 2N ~phase1 amplitude! to N ~phase! makes the prob-
lem simple. This will be demonstrated in the following su
section.

Some remarkable features about Eq.~2.6! are listed be-
low:

(1) Hermite coupling. If D̂ is Hermitian, thenJ is also
Hermitian. Namely,

D̂ jk5D̂k j* ⇒Jjk5Jk j* . ~2.8!

This is a precondition for the existence of a Liapunov fun
tion @27#.

(2) In-phase (synchronization) condition. If D̂ jk satisfies
the condition

(
k51

N

D̂ jk50 ~ j51, . . . ,N!, ~2.9!

then the equality

(
k51

N

Jjk51 ~ j51, . . . ,N! ~2.10!

holds. It guarantees the existence of the in-phase state,
Wn

(1)5Wn
(2)5•••5Wn

(N)5Wn whereWn is the limit cycle
solution of the single map~2.3! ~see Secs. III and IV!, as a
particular solution of Eq.~2.5!.

(3) Difference coupling form. If D̂ takes the form

D̂ jk5Djk2d jk(
l51

N

D jl ~2.11!

for a certain matrixD, Eq. ~2.9! is satisfied. The form~2.11!
will be referred to as the ‘‘difference coupling form’’ since

(
k51

N

D̂ jkW
~k!5 (

k51

N

D jk~W
~k!2W~ j !! ~ j51, . . . ,N!.

In the remaining part of the present paper, the coupling e
mentsD̂ jk are chosen according to Eq.~2.11!.

B. Coupled Ginzburg-Landau map system

Let us apply the above reduction scheme to the Ginzbu
Landau~GL! oscillator @8,9# given by

F~W,W* !5~11 iC0!W2~11 iC2!uWu2W. ~2.12!

This equation is quite familiar in the study of chemic
waves and spatiotemporal complex behaviors in react
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56 101GLOBALLY AND RANDOMLY COUPLED GINZBURG- . . .
diffusion systems. One easily checks that the equation
motion ~2.1! with Eq. ~2.12! has a unique stable limit cycl
W(t)5ei (C02C2)t. The transfer function is immediately ob
tained by integration of Eq.~2.1!:

f T~W,W* !5ei ~C02C2!TW@~12e22T!uWu2

1e22T#2~11 iC2!/2. ~2.13!

The system has a symmetry with respect to a simultane
phase shift~phase rotation symmetry!. Then, without loss of
generality, we can chooseC05C2, which implies a transfor-
mation to a rotating coordinate system with frequen
C02C2. For T→`, Eq. ~2.13! simplifies to

f `~W,W* !5WuWu212 iC2. ~2.14!

Therefore, the coupled map system in the limitT→` is
given by

Wn11
~ j ! 5 (

k51

N

JjkWn
~k!uWn

~k!u212 iC2 ~ j51, . . . ,N!,

~2.15!

where the couplingJjk remains finite by keepingD̂ jkT finite.
Equations~2.14! and ~2.15! will be called, respectively, the
GL mapand thecoupled GL map system.

In order to extract the dynamics restricted on the lim
cycle, let us introduce

Wn
~ j ![Rn

~ j !eifn
~ j !
, eiun

~ j !
[ f `~Wn

~ j ! ,Wn
~ j !* !. ~2.16!

Rn
( j ) andfn

( j ) are the amplitude and the phase ofWn
( j ) , re-

spectively, andun
( j ) is given byun

( j )5fn
( j )2C2lnRn

(j) . With
this notation we obtain coupled equations for the phase v
ableun

( j ) only,

eiun11
~ j !

5
(k
NJjke

iun
~k!

u(k
NJjke

iun
~k!

u11 iC2
~ j51, . . . ,N!. ~2.17!

The amplitude is determined by the phase dynamics

Rn11
( j ) 5u(k

NJjke
iun
(k)

u, which implies a reduction of the num
ber of degrees of freedom from 2N to N. This property
makes the problem easier to handle and the numerical c
putation faster. Equation~2.17! is the fundamental equatio
of motion in the present paper for studying the dynamics
coupled oscillator systems. Note that the present ph
model ~2.17! reduces to coupled circle maps in a weak co
pling case~see Appendix A!.

It is worth stressing that Eq.~2.17! can be interpreted as
kind of neural network model. For simplicity conside
C250. If both the set of coupling elementsJjk and the initial

valueseiu0
( j )
are real, then, by puttingsn

( j )5eiun
( j )
(561), Eq.

~2.17! takes the following form:

sn11
~ j ! 5sgnS (

k51

N

Jjksn
~k!D ~ j51, . . . ,N!. ~2.18!

This equation is identical to the well-known McCullock-Pit
model @28# with vanishing thresholds. As shown in Appe
dix B, it is possible to prove the existence of a Liapun
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function of Eq.~2.17! decreasing monotonically in time, pro
vided that the matrixJjk is Hermitian.

III. GLOBALLY COUPLED GL MAP SYSTEM

In this section we consider the large population dynam
of GL oscillators with the global difference coupling form
Eq. ~2.11!. The term ‘‘global’’ means that the coupling i
all-to-all, and the coupling constants are defined by

Djk5
K

N
~11 iC1!. ~3.1!

The corresponding oscillator system@the differential equa-
tion system~1.1!# with the global coupling has been studie
by Hakim and Rappel@8# and Nakagawa and Kuramot
~NK! @9#. They determined the stability regions in th
(C1 ,C2 ,K) space of two characteristic kinds of motion, th
synchronized and the uniform phase distribution state. F
thermore the possibility of the existence of irregular moti
in other parameter regions has been suggested.

Let E denote the unit matrix andI the matrix with all
elements equal to unity. Then the matrixD̂ is written as

D̂5
K

N
~11 iC1!~ I2NE!. ~3.2!

Hence we have

D̂m5~21!mKm~11 iC1!
mD̂ ~m50,1,2, . . .!,

~3.3!

and the coupling matrixJ5exp(TD̂) can be written as

J5E1
j

N
~ I2NE!, j[12e2~11 iC1!KT. ~3.4!

The diagonal and off-diagonal elements are thus given b

Jj j512
~N21!

N
j[Jdiag, Jjk5

j

N
[Joff ~ jÞk!.

~3.5!

In the limit KT→0 all off-diagonal elements vanish. On
should note that the above expression always satisfies
synchronization condition~2.10!. It is incidentally remarked
that the globally coupled GL maps transfers a set of variab
Wn

( j ) from a circle in the complex plane to another one~see
Appendix C!.

A. Linear stability of in-phase
and uniform phase distribution states

Let us for a moment consider finite values of the discr
time stepT. We will analyze the linear stability of particula
solutions, and then compare the results with the theT→`
limit and theT→0 limit. The limit T→0 will turn out to
coincide with the corresponding differential equation syst
by NK. The following calculations are carried out with re
spect to variablesWn

( j ) instead ofun
( j ) .
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First, let us consider the in-phase~IP! state, where all the
oscillators are in-phase and the system behaves just li
single oscillator

Wn
~ j !51[Wn

IP . ~3.6!

Here the phase rotation symmetry permits the cho
W0

( j )51. The linear stability of the solution~3.6! can be
examined by solving the equations for the deviationsdWn

( j )

anddWn
( j )* fromWn

IP , i.e.,

dWn11
~ j ! 5 (

k51

N

JjkS ] f T
]WU

W
n
IP
dWn

~k!1
] f T

]W* U
W
n
IP
dWn

~k!* D
~ j51, . . . ,N!, ~3.7!

and its complex conjugate. Instability occurs if the largest
the 2N eigenvalues becomes equal to unity in modulus~neu-
tral condition!. The eigenvalues of the stability matrix for th
IP state can be classified into four types:l151 ~1!,
l25e22T ~1!, l3 (N21), andl4 (N21), where the num-
bers in the parentheses refer to the degree of degene
l3 and l4 are given by the characteristic equatio
l21Al1B50, with the real coefficients

A5~11e22T!cos~C1KT!2C2~12e22T!sin~C1KT!,

B5e22~K11!T.

l1 andl2 are irrelevant to the stability of the IP state. Th
neutral condition,ul3u51 andul4u51, leads to

~A21uA224Bu24!254A2uA224Bu. ~3.8!

It determines the stability boundary of the IP state for fin
T. For T→0, Eq. ~3.8! simplifies to

~11C1
2!K12~11C1C2!50. ~3.9!

This condition agrees with that derived by NK for the diffe
ential equation system@9#. On the other hand, taking th
limit T→` and keeping the productKT finite, the stability
boundary is determined by

e2KT2@cos~C1KT!2C2sin~C1KT!#250. ~3.10!

This result is specific for our model.
Second, let us consider the linear stability of the unifo

phase distribution state~UPD!. In this state the phase is un
formly distributed between 0 and 2p, u ( j )52p j /N. The dis-
tribution function for the phase in the limitN→` is con-
stant, 1/2p. In contrast to the IP state we can say that
UPD state is the most disordered stationary state with res
to the phase distribution. The UPD solution is easily o
tained as

Wn
~ j !5Ae22KT2e22T

12e22T ei [2K~C12C2!nT1Q j ] , Q[2p/N.

~3.11!

This state exists only when the coupling strength ob
K<1. The amplitude attains the valueA12K in the limit
a

e

f

cy.

e
ct
-

s

T→0, in agreement with the corresponding different
equation system. With the help of cyclic determinant calc
lation @14#, the eigenvalues of the stability matrix for th
UPD state can be classified into six types:l151 (N22),
l25e2(K21)T (N22), l3 ~1!, l4 ~1!, l5(5l3* ) ~1!, and
l6(5l4* ) ~1!. l3 andl4 are given by a single characterist
equation l21Al1B50, and l5 and l6 by
l21A* l1B*50, where the complex coefficientsA and
B are defined by

A5S 11e2~K21!T

2 D ~11e~12 iC1!KT!

2 iC2S 12e2~K21!T

2 D ~12e~12 iC1!KT!,

B5e~32 iC1!KT22T.

The eigenvaluesl3, l4, l5, andl6 are relevant for the sta
bility of the UPD state. Two neutral conditions for these fo
eigenvalues lead to

~ uAu21uA224Bu24!252Re@A2~A* 224B!#

12uAu2uA224Bu. ~3.12!

It is just the stability boundary of the UPD state for the fin
T. To compare the stability boundary of the discrete equat
with that of the differential one, we expandA andB with
respect toT and obtain

K~K21!@K~2K21!C1
214~K21!~2K21!C1C2

2K~K21!C2
21~3K22!2#50 ~3.13!

in accordance with the analysis of the differential equat
system@9#. Oppositely, taking the limitT→` by keeping
KT finite, we obtain the equation that determines the bou
ary of the UPD state,

~11C2
2!~11e2KT!12@~12C2

2!cos~C1KT!

12C2sin~C1KT!#eKT54. ~3.14!

This is an inherent result of the present model.
Equations~3.8! and ~3.12! thus confirm that our system

can cope with the differential system as the special c
T→0. Note thatK and T do not enter independently Eqs
~3.10! and ~3.14!, but appear in the product formKT. This
fact shows that the limitT→` should be taken by keepin
KT finite in order to get useful results.

The stable regions of the IP and the UPD state are sh
in Fig. 1~a!. The characteristic feature of these phase d
grams resembles that for the differential equation system@see
Fig. 1~b!#. In particular, forC15C250, Eqs. ~3.10! and
~3.14! both giveeKT51. This implies that the motion in the
globally coupled system withC15C250 would be attracted
to the IP or the UPD state depending on the sign ofKT.

B. Numerical simulation

For the parameter valuesC1521 andC252, Eqs.~3.10!
and ~3.14! tell us that the IP and the UPD state lose th
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stability for KT,0.73 andKT.0.56, respectively. We nu
merically solved Eq.~2.17! with N5100, in order to confirm
these predictions. Initial phases were set to be uniformly
tributed between 0 and 2p. The numerical result shows tha
the IP state becomes unstable forKT,1.0. Such a discrep
ancy has also been reported in the differential equation
tem @9#. As mentioned by NK, it originates from the choic
of the initial condition, which is not contained in the basin
the IP state for 0.73<KT,1.0. Of course, if the system
starts with an initial condition near the IP state, we find t
stability boundaryKT50.73. On the other hand, the boun
ary of the UPD state agrees with the above mentioned va

In order to observe attractors in the unstable regions of
IP and the UPD state, we numerically integrated Eq.~2.17!
for KT50.56, 0.62, 0.73, 0.90, 0.99, and 1.00. The oscilla
number and the initial condition are the same as above.
time evolution of phases is shown in Fig. 2. This clea
shows that depending onKT the system has various attra
tors, i.e.,~a! UPD, ~b! collective chaos, ~c! cluster fusion, ~d!
and ~e! cluster states, ~f! IP, which have been reported als
by NK. Collective chaos implies a chaotic motion withN
degrees of freedom, which emerges especially as a resu
couplings among nonchaotic elements such as limit cy
oscillators. The dynamics of one site in the cluster fus
state reflects a repetition of the fusion to and the splitt
from clusters. The dynamics in then-cluster state is similar
to the coupledn map system. Strictly speaking,~d! is the
quasiperiodic 3-cluster state, and~c! the periodic 2-clusters
state.

To study the trajectory instability of the attractors o
served in Fig. 2, we investigate the Liapunov spectru
From Eq.~2.17!, the perturbation equation is written as

dun115G~n!dun , ~3.15!

wheredun5Col. (dun
(1) ,dun

(2) , . . . ,dun
(N)) and

Gjk~n![~Re2C2Im!S Jjke
iun

~k!

( l
NJjl e

iun
~ l !D . ~3.16!

The spectrum was obtained from the eigenvalues of the
trix Un defined bydun5Undu0 with n5500, after the tran-
sient has decayed. The results in Fig. 3 have characteri
similar to those found in NK. The spectra reflect the char

FIG. 1. Phase diagrams for coupled map system:~a! T→` with
finiteKT, C252.0,~b! T50.01,C252.0. Note the difference of the
scales of ordinates between the two figures. The phase diagram~b!
is close to that for the differential equation system.
s-

s-

e

e.
e
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he
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.
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ics
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teristics of the attractors observed in Fig. 2. Collective ch
(KT50.62) hasN positive Liapunov exponents, and clust
fusion (KT50.73) has positive Liapunov exponents of ord
N. For the spectrum of quasiperiodic 3-clusters (KT50.90)
and periodic 2-clusters, the partitioning process into clus
depends on the initial condition. Thus, these spectra cle
manifest the band structure corresponding to their clu
partitions. The spectra forKT50.56 and 1.00 have alread
been predicted analytically in the previous subsection.

The similarity of attractors between the differential equ
tion system and the present mapping system is again em
sized. Although the present approach uses effective ph
variables, we obtain quantitative coincidence with the diff
ential coupled oscillator system, which involves both t
phase and the amplitude variables. A similar striking coin
dence cannot be achieved if coupled circle maps are
ployed.

IV. RANDOMLY COUPLED GL MAP SYSTEM

In this section, we consider the coupled GL map syst
with quenched random couplingDjk . We will focus first on
the construction of the couplingJ, which is a remarkable
feature of our model.

A. Binary random coupling Djk56K/N

For a simple realization of couplingDjk , we adopt a bi-
nary randomness for each elementDjk along the lines of the
6J model in the spin glass theory, where the coupling
symmetric and either ferromagneticJ(.0) with the prob-
ability p or antiferromagnetic2J with 12p. Furthermore
the coupling constants are assumed to be independen
each other, so that the distribution function factorizes for
elements. Namely, the probability distribution ofDjk is
given by

P~Djk!5p dSDjk2
K

ND1~12p!dSDjk1
K

ND , Djk5Dkj ,

~4.1!

whereN, K, and p (0<p<1) denote the system size, th
coupling strength, and the mixture rate with different sig
of coupling, respectively. Without loss of generality,K is
chosen to be positive since the coupling matrix is symme
with respect to the transformation (K,p)→(2K,12p). With
Eq. ~4.1! thenth moment ofDjk is easily obtained as

^Djk
n &5SKND n@p1~21!n~12p!#[an . ~4.2!

Throughout this section, we focus on the influence of th
parameters on the type of attractors.

In order to discuss the effect of random coupling on t
statistical properties, we restrict the oscillator element to
simplest choice,T→` and C250. As mentioned above
only the phase variable affects the system evolution in
T→` limit. In addition C250 ensures the existence of
Liapunov function. However, the system has many differ
equilibria since frustration arises due to the mixture of po
tive and negative coupling constants. To get some imp
sion about the complexity of the coupled system w
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FIG. 2. ~Color!. Temporal evolutions of phase variables for Eq.~2.17! with C1521.0, C252.0, andN5100 for ~a! KT50.56, ~b!
0.62,~c! 0.73,~d! 0.90,~e! 0.99, and~f! 1.00. Phase values are expressed by the change of hue. For convenience, we put simultaneo
variables on a vertical line although the global coupling imposes no spatial structure among the oscillators. Moreover, we set
coordinate such thatun

(1) is fixed to zero at each time step.
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quenched randomness, the exact calculation of the equ
rium states for small systems withN52,3 is given in Appen-
dix D.

Because of the above simplification, our Ginzbur
Landau oscillator system becomes equivalent to theXY spin
system except the coupling form. We may apply the s
glass theory to our model to find equilibrium states in lar
systems. The theory of the Sherrigton-Kirkpatrick~SK!
model @29# tells us that for randomly Gaussian distribut
coupling constantsJjk ~not Djk) with finite first and second
moment

^Jjk&5J0[ J̃0 /N, ^Jjk
2&2^Jjk&

25s2[ J̃2/N, ~4.3!

the phase diagram is determined by the parameterJ̃0 / J̃
@30#. In the following we are mainly concerned with th
moments of off-diagonal elementsJjk , ( jÞk), since the di-
agonal part$Jj j % is associated with the origin of the energ
and never influences the equilibrium states.

It is difficult to calculate the functionsJ05J0(K,T,p,N)
ands5s(K,T,p,N) without approximations. Let the matri
J be approximated by the product of two matricesA andB
according toJ'AB, where

Ajk5@exp~TD!# jk , ~4.4!

Bjk5expS 2T d jk(
l51

N

D jl D . ~4.5!

This decomposition would hold rigorously, ifA andB com-
mute. But thejk matrix element of this commutation relatio
reads

(
l

FDjl S d lk(
m

DlmD 2S d j l(
m

D jmDDlkG

FIG. 3. Liapunov spectra for attractors observed in Fig. 2. T
real part of the Liapunov exponents are arranged in order of m
nitude.
b-

-

n
e

5Djk (
m51

N

~Dkm2Djm!, ~4.6!

and does not vanish in general. However, the average of
~4.6! over random realizationD vanishes, and its variance i
estimated asO(N23/2) by means of the random walk theor
@31#. So, the above decomposition holds asymptotically
the limit N→`.

Furthermore, if we neglect the correlation between
two matrices, then̂J& is replaced by the product of the av
erage values,

^J&'^A&^B&. ~4.7!

Although the validity of the decoupling approximation is n
obvious, we will confirm in the following that this approxi
mation yields qualitatively quite good results for the para
eter region of interest.

B. Moments of Jjk

To calculate the moments of the elements of random m
tricesA andB, we make an approximation described in A
pendix E. The results are

^Ajk&5
1

N
~eKT~2p21!21!1O~N22!, ~4.8a!

^Aj j &511
1

N
~eKT~2p21!21!1

~KT!2

N
2p~12p!1O~N22!,

~4.8b!

^Ajk
2 &5

1

N2 ~eKT~2p21!21!21SKTN D 24p~12p!1O~N23!,

~4.8c!

^Ajk
3 &5

1

N3 ~eKT~2p21!21!31SKTN D 34p~12p!~2p21!

1O~N24!, ~4.8d!

and

^Bj j
m&5e2mKT~2p21!1O~N21! ~m>1!, ~4.9!

where jÞk. By using Eqs.~4.8! and ~4.9!, the moments of
the off-diagonal elementsJjk are evaluated as follows:

^Jjk&5
1

N
~12e2KT~2p21!!, ~4.10a!

^Jjk
2 &5

1

N2 ~12e2KT~2p21!!2

1SKTN D 24p~12p!e22KT~2p21!, ~4.10b!

e
g-
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^Jjk
3 &5

1

N3 ~12e2KT~2p21!!3

1SKTN D 34p~12p!~2p21!e23KT~2p21!,

~4.10c!

and so on. One easily finds that the distribution ofJjk is not
Gaussian for smallN, and that it approaches a delta functio
with a peak at zero forN→`. Furthermore,̂ Jjk

2 &2^Jjk&
2 is

of the orderO(N22) though it should beO(N21) @see Eq.
~4.3!#. Concerning the spin glass theory, this difference i
plies that the term proportional tôJjk& in the mean field
treatment could hide the term proportional to^Jjk

2 & if we take
the thermodynamic limit. In this sense, only for intermedia
values ofN an approximately Gaussian distribution may
realized.

By making use of the above results, the standard devia
s5A^Jjk

2 &2^Jjk&
2 is obtained as

s5
KT

N
2Ap~12p!e2KT~2p21!. ~4.11!

s vanishes forp50 or p51 in accordance with the globa
ferromagnetic and the anti-ferromagnetic coupling, resp
tively. In a similar way the diagonal part^Jj j & is obtained as

^Jj j &512
N21

N
~12e2KT~2p21!!

1
~KT!2

N
2p~12p!e2KT~2p21!. ~4.12!

By combining^Jj j & with ^Jjk&, the synchronization condition
~2.10! is confirmed in the thermodynamic limit even in th
random coupling case. Needless to say, these mean v
coincide with the corresponding values in the global co
pling cases forp50 and 1.

In order to verify the analytical estimates, we carried o
numerical simulations. For that purpose we generated a
dom matrix Djk for several parameters in the rang
0,KT<50 and 0<p<1, and investigated the momen
^Jjk& and ^Jjk

2 & with 9900 (5N22N) off-diagonal matrix
elements. The results are plotted in Fig. 4. The analyt

FIG. 4. The mean and variance of off-diagonal elementsJjk for
the random coupling case. Symbols are numerical results and
stand for approximate results~4.10a! and~4.11!. For details, see the
text.
-

n

c-

es
-

t
n-

al

estimates seem to be in overall agreement with the nume
results.

C. Candidate for phase boundaries

We assume that the curvesJ̃0 / J̃5const must be a phas
boundary for certain values of the constant. Namely, by n
ing the results of the SK model, the following expressi
shall serve as a phase boundary in the (KT,p) plane:

~12e2KT~2p21!!

2KTAp~12p!e2KT~2p21!
5const3N21/2. ~4.13!

Figure 5 depicts these curves for several values of the ri
hand side of Eq.~4.13!. Although we have no theory at han
to determine the constant, phases would be separate
these contours.

We numerically simulated the dynamics of our mod
with different realization ofDjk , and investigated wha
kinds of attractors are realized depending on the param
values 0<p<1 and 0,KT<50. For the simulations we
used the system sizeN550 and 100, and 100 runs each tim
To observe dynamical behavior and to evaluate the attrac
quantitatively, we introduce two complex order paramet
by

Z15
1

N(
j51

N

exp~ iun
~ j !!, Z25

1

N(
j51

N

exp~2iun
~ j !!,

~4.14!

where 0<uZ1u<1,0<uZ2u<1. Note that only their ampli-
tudes are relevant because of the phase rotation symm
The order parameterZ1 characterizes the distance to the i
phase state, andZ2 the distance to a two cluster state wi
phase differencep. In particular, uZ1u5uZ2u51 stands for
the IP state, anduZ1u50 anduZ2u51 for the two cluster state
with equal domain size.

es

FIG. 5. Contours corresponding toJ̃0 / J̃5const in the
(KT,p) plane. Numerical values are const3N21/2.
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Figure 6 shows the dependence of the quanti
z1[^uZ1u& and z2[^uZ2u& on bothKT andp. Here the an-
gular brackets represent an average with respect to both
initial conditions of phase variables and the realization of
random matrixDjk . These figures suggest the existence
three phases: ~1! in-phase state characterized b
(z1 ,z2).(1,1), ~2! antiphasestate ~AP! characterized by
(z1 ,z2).(0,1), and~3! oscillator glassstate~OG! charac-
terized by (z1 ,z2).(0,0) @32#. Figure 7 depicts the numeri
cally obtained phase diagram. For convenience we pre
numerical values for the phase boundaries

z150.9460.05,IP-AP; z250.2560.01,AP-OG.
~4.15!

A concrete discussion of each phase is summarized belo
~1! In-phase state: Our analysis presented above alre

suggests that in the IP state the majority of the coupl
coefficientsJ is positive. Hence the occurrence of the
state for large values ofp is easily understood. It seem
plausible that in the limitKT→0, where the extremely long
relaxation time prevents us from approaching equilibriu

FIG. 6. Numerical results for order parameters:~a! z1 vs p, ~b!
z2 vs p. The system size and the number of ensembles are fixe
100 and 100, respectively. The data are also used in Fig. 7.

FIG. 7. Numerically determined phase diagram using the d
nition ~4.15!. The bars indicate the transition region inp. The sys-
tem size plays a crucial role on the position of phase boundarie
is explicitly involved in Eq.~4.13!. Compare with Fig. 5.
s

he
e
f

nt

.
dy
g

,

the IP-AP boundary tends to the point (KT,p)5(0,1). On
the contrary, in the limitKT→`, Fig. 7 suggests that the
boundary between IP and AP asymptotically approache
constant value in accordance with our analytic prediction
ordinary spin glass theory the phase transition line co
sponds to the choice const51 in Eq. ~4.13!. In the present
case, our numerical result suggests a value different fr
unity. The reason may be attributed to the approximate
sults ~4.10a! and ~4.10b!, which were derived under the as
sumption of nonvanishinĝDjk&. The IP-AP transition line
unfortunately lies close top50.5 where our ansatz break
down.

~2! Anti-phase state: In this state, the phase distribut
has two broad peaks separated byp. As p is decreased,z2
decreases from about unity to zero. The AP-OG transit
line shown in Fig. 7 is reproduced quite convincingly b
inserting a negative value for the constant~see Fig. 5!.

~3! Oscillator glass state: This state is similar to the UP
state (z150,z250) in the sense thatz1 andz2 vanish ap-
proximately. We did not observe an OG state withz1 and
z2 equal to zero. Such a feature is related to the existenc
a Liapunov function forC250 @33#. Instead, we found a
small region where bothz1!1 andz2!1 hold. Numerical
simulations generate this so-called oscillator glass state
the corresponding parameter values~Fig. 6!. The majority of
coupling elements belongs to negative values, which is si
lar to the fact that the UPD state is stable in the case
global anti-ferromagnetic coupling@Eq.~3.14!#.

For a finiteN, the AP state can be observed in the para
eter region wherê Jjk&>0, and the numerically obtaine
candidate for AP-OG boundary resembles the curve defi
by Eq. ~4.15!. But, its existence is not proved by the S
theory and our discussion. WhenN tends to infinity, the
curves given by Eq.~4.13! with positive values for the con
stant tend to the linep50.5 from above, whereas the curve
with negative values for the constant approachp50.5 from
below for any value ofKT. As a consequence the AP pha
would vanish~see Fig. 7! in the thermodynamic limit.

Let us emphasize the similarity between Fig. 7 and
phase diagram in the SKXY spin system. References@34,35#
reported on two mixed phases, which may have the aspe
both the ferromagnetic phase and the spin glass one. T
two were separated by three boundaries, i.e.,J0̃/ J̃51, the de
Almeida–Thouless line and the Gabay-Toulouse line@36#.
However, returning to our phase diagram, it is still difficu
to recognize whether critical values different fromJ0̃/ J̃;1
exist at all. In such a case a theoretical or numerical de
mination would be tempting. Consequently we have yet
definite idea about the relation between the mixed state
the SK XY spin system and the AP phase in the pres
system except that both are surrounded by the most ord
phase~IP, ferromagnetic! and the most disordered one~OG,
spin glass! in each phase diagram.

V. CONCLUDING REMARKS

In this paper, we proposed a general approach to c
structing coupled map systems for coupled differential eq
tions and applied it to the coupled GL oscillator system. T
limit T→` is of our particular interest. For global couplin

to
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theoretical and numerical results coincide with the full d
ferential equation system. In this sense, as long as gl
coupling is concerned, the GL map system well describes
GL equation system in contrast to the frequently investiga
circle map system@16,17#. Our success is even more strikin
if one keeps in mind that each oscillator is completely d
scribed by phase variables at every discrete time step.
random coupling matrices we constructed quantitatively
phase diagram with the help of the spin glass theory.
extension to different random realizations, e.g.,^Djk&Þ0, is
straightforward.

Finally, we add a comment on the relation between
present model and some neural network models. Our m
with C250 andT→` belongs to the group of phaser~os-
cillator! neural network models@23,24,37,38#. J is specified
by thegeneralized Hebb rule, which is designed to retrieve
embedded phase patterns. In this case,C1 becomes unimpor-
tant for the lack of a unique phase direction for random c
plings. Replica symmetry solutions for the model reveal
storage capacityac50.0377. In the future, we intend to gen
eralize this network toC2Þ0 for which no Liapunov func-
tion is available and interesting dynamical behaviors are
pected to occur even in a rotating frame. Research in
direction is now in progress, and will be reported elsewhe
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APPENDIX A: WEAK COUPLING LIMIT
OF THE COUPLED GL MAP SYSTEM

Equation~2.17! is rewritten as

un11
~ j ! 5un

~ j !1a j j1arg~hn
~ j !!2C2lnuhn

~ j !u,

hn
~ j !5 (

k51

N

uJjkuei ~un
~k!

2un
~ j !

1a jk2a j j !, ~A1!

where we putJjk5uJjkueia jk. a j j stands for the intrinsic fre-
quency of the j th oscillator. In the weak coupling cas
(b jk[uJjku/uJj j u!1 for kÞ j ), Eq. ~A1! reduces to

un11
~ j ! 5un

~ j !1a j j2C2lnuJj j u1A11C2
2(
k51

N

b jksin~un
~k!2un

~ j !

1a jk2a j j2arctanC2!, ~A2!

in the lowest order with respect to the relative coupli
strengthb jk . This type of phase model is called couple
circle maps, and has been used by several authors@16–18# to
study synchronized oscillations and the dynamical beha
associated with its breakdown.

APPENDIX B: LIAPUNOV FUNCTION FOR C250

If the matrixJ is Hermitian, the equation of motion~2.17!
for C250 has the Liapunov function
al
e
d

-
or
e
n

e
el

-
e

x-
is
.

-

r

En52
1

2(j ,k
N

Jjke
2 iun

~ j !
eiun

~k!
. ~B1!

This is proved as follows. First, note thatEn is a real func-
tion since J is Hermitian. We define the local potentia

hn
( j )5(k51

N Jjke
iun
(k)
. The energy changeDEn[En112En

with the change at the sitej is calculated as

DEn52uhn
~ j !u@12cos~arghn

~ j !2un
~ j !!#<0. ~B2!

SinceEn monotonically decreases in the course of time
has the property of a Liapunov function.

APPENDIX C: GEOMETRIC INTERPRETATION
OF GLOBALLY COUPLED GL MAPS

The time evolution of amplitudeRn
( j ) can be read off from

Eq. ~2.15! as

Rn
~ j !5U(

k51

N

Jjke
iun

~k!U5UJoff(
k51

N

eiun
~k!

1~Jdiag2Joff!e
iun

~ j !U.
This expression indicates that the set$Wn

( j ) : j51, . . . ,N% is
transfered from the locations on a circle in the complexW

space with the center Joff(e
iun
(k)

and the radius

uJdiag2Joffu5e2KT to one with the centerJoff(e
iun11
(k)

and the
same radius.

APPENDIX D: EQUILIBRIA CONSTRUCTED
FOR N52,3 GL MAPS

In this Appendix we analyze the systems of two and th
coupled elements withC250 and symmetric couplings
Djk5Dkj . The conditionC250 prevents our system from
permanent temporal evolution. As defined in Sec. IV,
will adopt a binary coupling strength

Djk56K/N. ~D1!

1. N52 case

Since only one coupling (D12) between the two oscilla-
tors occurs, Eq.~2.11! gives a unique coupling configuration
regardless of the sign of self-couplings, as

D̂5
K

2 S 21 1

1 21D , ~D2!

whereK.0 (,0) means the ferromagnetic~antiferromag-
netic! case using the terminology of spin systems. The c
pling matrix J5eTD̂ can be easily obtained as

J5
1

2S 11e2KT 12e2KT

12e2KT 11e2KTD . ~D3!

The equilibrium state (u1
0 ,u2

0) of Eq. ~2.17! is determined
by
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TABLE I. Equilibrium states and their stability forN53. We use an abbreviationg[g(KT), where
g(x) is given by Eq.~D7!. Stars refer to the solutions whose existence condition depends onKT. We give no
explicit existence condition because all of them are unstable.

(u2
02u1

0mod2p,u3
02u1

0mod2p)

(D12,D23,D31) Stable Unstable

(1,1,1) (0,0) (p,0)!, (0,p)!, (p,p)!, ( 23p,2
2
3p), (2

2
3p,

2
3p)

(1,2,1) (g,2g), (2g,g) (p,0), (0,p), (p,p)!, (0,0)
(2,1,2) (p,p) (p,0)!, (0,p)!, (0,0), (g,2g), (2g,g)
(2,2,2) ( 23p,2

2
3p), (2

2
3p,

2
3p) (p,0), (0,p), (p,p), (0,0)
e
in
ro

t
,

s

on

to

in

e-

n

ap

the
nced

ent
ler
eiu1
0
5

J11e
iu1
0
1J12e

iu2
0

uJ11eiu1
0
1J12e

iu2
0
u
, eiu2

0
5

J21e
iu1
0
1J22e

iu2
0

uJ22eiu1
0
1J22e

iu2
0
u
.

~D4!

This set of equations has two types of solutionsu1
02u2

050
and p. The linear stability analysis shows thatu1

02u2
050

andp are stable forK.0 andK,0, respectively.

2. N53 case

ForN53, the calculation ofJ goes along the lines of th
previous section. Note however, that two different coupl
configurations occur: all of three couplings are either fer
magnetic, i.e., (D12,D23,D31)5(1,1,1) or antiferromag-
netic, (2,2,2) ~type 1! and one of them has a differen
sign from the others, namely
(1,1,2),(1,2,2),(1,2,1),(2,1,1),(2,1,2), and
(2,2,1) ~type 2!.

For type 1, matricesD̂ andJ are given by

D̂5
K

3S 22 1 1

1 22 1

1 1 22
D ,

J5E1
12e2KT

3 S 22 1 1

1 22 1

1 1 22
D , ~D5!

whereE is the 333 unit matrix. This coupling correspond
to the (1,1,1) coupling for K.0 and to (2,2,2) for
K,0. For type 2, by taking into account the permutati
symmetry, it is sufficient to define matricesD̂ andJ by

D̂5
K

3S 0 1 21

1 22 1

21 1 0
D ,

J5
1

3
E1

1

6S q13q21/3 22q q23q21/3

22q 4q 22q

q23q21/3 22q q13q21/3
D , ~D6!

where q[e2KT. This representation corresponds
(1,2,1) for K.0 and to (2,1,2) for K,0. We recall
that the signs of the diagonal elements ofD are unimportant.

With these J’s, it is sufficient to solve two kinds of
coupled algebraic equations for the fixed po
g
-

t

(u2
02u1

0 ,u3
02u1

0). Note that it is possible to chooseu1
050

without loss of generality because of the rotational symm
try. The equilibrium states forN53 are summarized in
Table I with the results of their linear stability. The solutio
for the (1,2,1) configuration depends onKT through the
functiong(KT), defined by

g~x!5arccosS 211e2x

223ex/31e2xD . ~D7!

We remark that~see Fig. 8! g(1`)5p/2, g(0)5p/3,
g(2`)50.

We briefly discuss the relation between the three GL m
system and the spin system made of threeXY spins@39# with
three bondsJjk56J. The phase of the GL map with
C250 corresponds to the direction ofXY spin. The differ-
ence with respect to equilibria and stability is observed in
coupling strength dependence. Such dependence is enha
with the system size.

APPENDIX E: MOMENTS OF Ajk AND Bjk

First of all, we consider the average of the matrix elem
Ajk . To this end we illustrate our approach on the simp

FIG. 8. The functiong(x), @Eq. ~D7!#. It determines the forma-
tion of stable solutions for (1,2,1).
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caseN52. The off-diagonal elementA12 is expanded up to
T5 as

A125TD121
1

2!
T2~D11D121D12D22!1

1

3!
T3~D11

2 D121D12
3

1D11D12D221D12D22
2 !1

1

4!
T4~D11

3 D1212D11D12
3

1D11
2 D12D2212D12

3 D221D11D12D22
2 1D12D22

3 !

1
1

5!
T5~D11

4 D1213D11
2 D12

3 1D12
5 1D11

3 D12D22

14D11D12
3 D221D11

2 D12D22
2 13D12

3 D22
2 1D11D12D22

3

1D12D22
4 !1O~T6!.

Taking the average over random variablesDjk and noting
that ^D11

l D12
mD22

n &5alaman , and so on, we obtain

^Ajk&5Ta11
1

2!
T22a1

21
1

3!
T3~a312a2a11a1

3!

1
1

4!
T4~6a3a112a2a1

2!1
1

5!
T5~a512a4a1

16a3a216a3a1
21a2

2a1!1O~T6!,

where the index 12 is replaced byjk only to denote the
averaged off-diagonal element.

By carrying out a same procedure, the calculation for
bitrary N is straightforward, and yields

^Ajk&5Ta11
1

2!
T2Na1

2

1
1

3!
T3@~N21!2a1

312~N21!a2a11a3#

1
1

4!
T4@~N22!~N22N23!a1

412~N11!a3a1

1~3N22N28!a2a1
2#

1
1

5!
T5@~N22!~N322N224N14!a1

5

1~4N225!~N22!a2a1
31~5N2211N13!a2

2a1

1~3N222N22!a3a1
212~2N21!a3a2

12~N21!a4a11a5#1O~T6!.
ce

i-
ing
r-

In the thermodynamic limitN→`, by neglectingO(N22)
terms, the general term of the expression turns out to
N21(TNa1)

nn!, (n51, . . . ,5), where we used
a15O(N21). Inductively assuming that this holds in gen
eral, and summing up the series, we obtain Eq.~4.8a!. It is
noted thatK andT always appear within the product form
KT similar to the globally coupled case in Sec. III. So,KT is
our intrinsic parameter. With the same procedure, the a
ages of diagonal terms are obtained as Eq.~4.8b!.

Now let us turn to the calculation of higher moments
off-diagonal elementsAjk . In particular, we have to calcu
late the mean squarêAjk

2 &, i.e., the square of the matri
element and not the matrix element of the squared matrix
obtain the functionJ̃ (KT,p). For largeN, the most domi-
nant contribution in the coefficient ofO(Tm) in the expan-
sion of ^Ajk

2 & turns out to be proportional toa1
m (m>3).

Thus we can estimate up toO(N22), and find

^Ajk
2 &5T2a21T3

2

2!
Na1

3

1T4S 1

~2! !2
1

2

3! DN2a1
41•••1O~N23!.

Taking the thermodynamic limits, we consequently find E
~4.8c! using the same assumption made above. Simila
other higher moments are obtained as Eq.~4.8d! and so on.
The calculation of higher moments of diagonal elements
not necessary for the present purpose.

The calculation of moments ofBjk can be performed
much more easily, since the matrix in the exponential is
agonal. The averaged off-diagonal part^Bjk& vanishes and
the diagonal part̂Bj j & is readily given by

^Bj j &511~2T!Na11
1

2!
~2T!2N2a1

21
1

3!
~2T!3N3a1

3

1
1

4!
~2T!4N4a1

41•••1O~N21!.

Summing up this expansion leads approximately to~4.9! in
the thermodynamic limit. Note that the factorN results from
the number of matrix elementsDjk in the diagonalD̂ jk .
After all, the averaged matrixB is neither more nor less tha
the unit matrix multiplied by a scalar. This simplicity give
~4.9! as the higher moments ofBjk , which means no devia
tion from the corresponding power of its mean value. A
moments of off-diagonal elements vanish.
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